

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Given } f(x)=\cos 2 x \text { and }\left[\frac{\pi}{8}, \frac{7 \pi}{8}\right] \\
& f(x) \text { is cont. } \dot{\varepsilon} \text { diff every where } \\
& f\left(\frac{\pi}{8}\right)=\operatorname{Cos} \frac{2 \pi}{8}=\operatorname{Cos} \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
& f\left(\frac{7 \pi}{8}\right)=\operatorname{Cos} 2\left(\frac{\pi}{8}\right)=\operatorname{Cos} \frac{7 \pi}{4}=\operatorname{Cos} \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
& \text { All three conditions of ole's term are met, } \\
& \text { So there is a number } C \text { in }\left(\frac{\pi}{8}, \frac{7 \pi}{8}\right) \text { where } \\
& \begin{array}{l}
f^{\prime}(c)=0 \\
f(x)=\cos 2 x \\
f^{\prime}(x)=-\sin 2 x \cdot 2
\end{array} \quad \Rightarrow \begin{array}{l}
f^{\prime}(x)=-2 \sin 2 x \\
f^{\prime}(c)=0 \\
-2 \sin 2 C=0
\end{array}
\end{aligned}
$$

$f(x)=x^{3}-2 x \quad, \quad[-2,2] \quad f(2)=z^{3}-2(2)=4$ $f(x)$ is a poly nominal function. $\quad f^{\prime}(x)=3 x^{2}-2$ It is cont. $\dot{\xi}$ diff. everywhere
By MUT, there is a number C in $(-2,2)$
where $f^{\prime}(c)=\frac{f(2)-f(-2)}{2-(-2)}$

$$
\begin{array}{cc}
3 c^{2}-2=\frac{4-(-4)}{2-(-2)} & 3 c^{2}-2=\frac{8}{4} \\
(-2,2) & 3 c^{2}=4 \\
c= \pm \frac{2}{\sqrt{3}}
\end{array}
$$

Nov 13-10:33 AM

Use MUT to Prove $|\sin b-\sin a| \leq|b-a|$
For $a l l a$ and b.
$\rightarrow S^{\prime}(x)=\operatorname{Cos} x$
Consider $f(x)=\sin x$ on $[a, b]$
$f(x)$ is diff. ε. cont. everywhere
by MVT, there is a number C in (a, b)
such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\cos C=\frac{\sin b-\sin a}{b-a}
$$

$$
|\cos c|=\frac{|\sin b-\sin a|}{|b-a|}
$$

$-1 \leq \cos C \leq 1 \rightarrow|\cos c| \leq 1$

$$
\begin{aligned}
& \frac{|\sin b-\sin a|}{|b-a|} \leq 1 \\
& \frac{|\sin b-\sin a| \leq|b-a|}{\text { Cor all } a \dot{\varepsilon} \cdot b .}
\end{aligned}
$$

Nov 13-10:44 AM

$$
\begin{aligned}
& h(x)=f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right] \\
& h^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a} \\
& \text { by Conclusion of Rolls's Thru } \\
& h^{\prime}(c)=0 \\
& f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0 \\
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { Conclusion of } \\
& \text { MUT. }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sqrt{x}-\sqrt[4]{x} \\
& \text { Domain }[0, \infty) \\
& f(0)=0 \rightarrow Y \text {-Int }(0,0) \\
& f(x)=0 \rightarrow x \text {-Int. } \sqrt{x}-\sqrt[4]{x}=0 \\
& (0,0),(1,0) \sqrt{x}=\sqrt[4]{x} \text { Raise to th } \\
& \left\{\begin{array}{ll}
& (\sqrt{x})^{4}=(\sqrt[4]{x})^{4} \\
x^{2}=x \\
x^{2}-x=0
\end{array} \int_{(1,0)} \quad \begin{array}{l}
x=0 \\
x=1
\end{array}\right.
\end{aligned}
$$

Nov 13-10:56 AM

$$
\begin{aligned}
f(x)=x^{1 / 2}-x^{1 / 4} & -\frac{3}{4}+[0] \frac{-1}{2} \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}-\frac{1}{4} x^{-3 / 4} & =\frac{1}{4} x^{-3 / 4}\left[2 x^{\frac{1}{4}}-1\right] \\
& =\frac{2 \sqrt[4]{x}-1}{4 \sqrt[4]{x^{3}}}
\end{aligned}
$$

$f^{\prime}(x)$ undefined at $x=0$
$f^{\prime}(x)=0 \rightarrow 2 \sqrt[4]{x}-1=0 \longrightarrow x=\frac{1}{16}$
$S^{\prime}(x)=\frac{1}{2} x^{-1 / 4}-\frac{1}{4} x^{-3 / 4} \quad-\frac{7}{4}+\left[?=-\frac{5}{4}\right.$
$f^{\prime \prime}(x)=\frac{-1}{8} x^{-5 / 4}+\frac{3}{16} x^{-7 / 4}=\frac{-1}{16} x^{-7 / 4}\left[2 x^{\frac{1}{2}}-3\right]$
$f^{\prime \prime}(x)$ undefined at $0 . \quad=\frac{-(2 \sqrt{x}-3)}{16 \sqrt[4]{x^{7}}}$
$f^{\prime \prime}(x)=0 \rightarrow 2 \sqrt{x}-3=0$ \qquad
$\xrightarrow[0]{4} 1 / 16 \quad 1 \quad x=\frac{9}{4}=2.25$ \qquad
\qquad
\qquad
\qquad

Abs. Minimum
\qquad

Nov 13-11:10 AM
find two positive numbers with sum of 16 and Smallest value of Sum of their Squares.

$$
1,15 \longrightarrow 1^{2}+15^{2}=1+225=226
$$

$$
2,14 \quad \longrightarrow 2^{2}+14^{2}=\quad=200
$$

$$
6,10 \longrightarrow 6^{2}+10^{2}=\cdots=136
$$

$$
8,8 \longrightarrow 8^{2}+8^{2}=\cdots \cdots=128
$$

$$
\begin{aligned}
& x+y=16 \\
& x^{2}+y^{2} \text { must be minimum } \\
& x^{2}+(16-x)^{2}=\left\{\begin{array}{l}
f^{\prime}(x)=2 x+2(16-x) \cdot-1 \\
f^{\prime}(x)=2 x+2 x-32 \\
f^{\prime}(x)=4 x-32 \\
f^{\prime \prime}(x)=4>0 \\
\text { c.v. }
\end{array} \text { i } 16-x\right)^{2}
\end{aligned}
$$

$S^{\prime}(x)=0$
$\begin{aligned} 4 x-32 & =0 \\ x & =8\end{aligned}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-2+12 x-12 x^{2} \quad f(0)=4 \\
& f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+C \quad \text { Find } f(x)=12 \\
& f^{\prime}(0)=-2(0)^{00}+6(0)^{+0}-4(0)^{+0}+C=12 \\
& \quad c=12 \\
& f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+12 \\
& f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+C \\
& f(0)=0+0-0+0+C=4 \\
& f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+4
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

